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An efficient algorithm for first-order grid intersections, by computing geomet-
rically the intersection volume between donor and target zones, is developed for
polyhedral meshes. We examine two applications of grid intersections. One appli-
cation is first-order remapping, in which zone and node centered fields defined on
a given mesh are transferred to a different mesh. The second application is region
overlays, in which a region with homogeneous material properties is approximated
by a grid of polyhedra and mapped onto an arbitrary hexahedral mesh, creating
mixed zones on the boundary of the region. We demonstrate the use of this grid
intersection algorithm within the framework of hydrodynamics simulations, and us-
ing a domain decomposed mesh, we study the feasibility of a parallel implementa-
tion. c© 1999 Academic Press
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1. BACKGROUND

We examine two applications of polyhedral grid intersection calculations, as they relate
to hydrodynamics simulations. One application is direct remapping, in which physical fields
such as the mass density, which are defined on a “donor” mesh, are transferred to an unrelated
“target” mesh. We assume that both meshes have been provided and focus on the geometric
computations and applications here. Another application is to approximate a specific region,
such as a sphere, with a set of polyhedral zones, to estimate the fraction of each target zone
that is contained within the sphere. This feature is useful, for example, to initialize problems
for multimaterial hydrodynamics codes, such that the mesh boundaries are not designed to
specifically conform to the surface of the sphere, but instead, the boundary of the sphere is
modeled using mixed zones, and interface reconstruction methods [1] are used during the
hydrodynamics simulation to maintain the integrity of the material boundary.
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We consider two grids, a donor mesh withNd zones and a target mesh withNt zones.
For a general grid intersection, we compute the integral of some field quantityq(x), defined
within a zonezd of the donor mesh, over the figure of intersection between zonezd and a
zonezt on the target mesh. The result is

I (zd; zt ) =
∫
P(zd;zt )

dx q(x), (1)

whereP(zd; zt ) is the figure of intersection. This is a two-phase calculation; one must first
obtain boundaries of the figureP, and subsequently evaluate the integral withinP. In a
first-order grid intersection, we take the field to be constant throughout the donor zone

q(x) = qzd (2)

so that (1) becomes

I (zd; zt ) = V(zd; zt )qzd , (3)

whereV(zd; zt ) is the volume of intersection betweenzd andzt .
Various methods have been utilized to perform grid intersection calculations, including

geometric methods which are capable of giving an exact definition ofP, numerical methods,
and sampling techniques. A two-dimensional grid intersection calculation by Horak [2]
illustrates a sampling method in which a donor zone is represented by a set of points, each
assigned a partial area of the donor zone. The target zone containing a sample point receives
the area from the donor zone associated with that sample point. Another type of sampling
calculation is to approximate the donor and target zones using Cartesian voxels (pixels)
in three (two) dimensions and to perform an intersection between octrees (quadtrees) [3].
An advantage of sampling is that it can handle donor and target zones with complicated
boundaries; a disadvantage is the slow convergence of the intersection volume (or area in
2d) as the number of sample points increases.

Three-dimensional grid intersections have been utilized in a second-order remapping code
by Dukowicz and Padial [4]. In their computation of the volume of intersection between
hexahedral zones, they define the zone boundaries as the quadric surfaces that form the
bilinear interpolations between the four corner nodes of each face. A hybrid algorithm is
used to approximate the figure of intersection. Gauss’ theorem is applied twice to convert
the volume integral (1) to line integrals along the edges and curves on the boundary of
P. A geometric calculation of points of intersection between donor edges and target faces
(in general, quadric surfaces) and vice versa is followed by a Runge–Kutta procedure to
construct curves of intersection and numerical integration along these curves to complete
the calculation ofI . However, Dukowicz and Padial have also pointed out certain cases
in which their algorithm runs into difficulty. Since this technique relies on surface–edge
intersections to form the endpoints of surface–surface intersection curves, such curves which
do not contain an endpoint on the edge, but instead are confined within the boundaries of
the surface, are missed. In addition, self-intersecting zones or parity-inverted zones, which
can occur in highly distorted meshes, can cause misidentification of intersections between
edges and surfaces. A result of missed intersections is local loss of conservation of integrated
field quantities, such as mass and momentum. Aware of these potential causes of failure,
Dukowicz and Padial have implementedpost factochecks of the results of the remap, and
perturbed the mesh nodes and repeated the remap, where a failure is detected. However, such
perturbation procedures are unreliable since there is noa priori guarantee that the modified
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mesh will produce a successful remap result, and mesh perturbation also systematically
reduces the accuracy of the remap.

The primary purpose of this article is to develop a geometric algorithm in three dimen-
sions that handles every possible intersection between donor and target polyhedral zones,
producing an exact determination ofP. Our geometric method can also provide a sensible
result when a zone within the mesh, or a group of zones, is self-intersecting. We handle
various degenerate cases that would otherwise cause the computation ofV(zd; zt ) to fail,
without altering the positions of the donor or target nodes. We use filtering procedures
that identify candidates for intersecting donor and target zones by comparing coordinates
for these zones, and this procedure enables us to handle pathological meshes that contain
self-intersecting zones. The exact details of the filtering depend on the types of grids; the
filtering procedures for remapping (Section 3.3) and region overlays (Section 4.2) differ.

Since we focus on the geometric technique, we list applications of first-order grid in-
tersections here. Dukowicz [5] has shown (in two dimensions) that repeated applications
of first-order remapping can cause unacceptable levels of diffusion and we expect simi-
lar behavior in three dimensions. We will therefore emphasize single-use applications of
remapping, as opposed to frequent use within a hydrodynamics simulation. Our algorithm
is based on computing the volume of intersection between a triangular polyhedron and a
tetrahedron, and by convention we choose the target grid to be composed of tetrahedral
zones. In Section 3 we describe the generalization to hexahedral zones, and in Section 4
we utilize donor octahedra and target hexahedra. We can easily apply this method to other
target grids with polyhedral zones by decomposing target zones into tets, and triangulating
faces of donor polyhedra.

2. INTERSECTION OF A POLYHEDRON WITH A TETRAHEDRON

We describe the intersection volume calculation between a donor triangular polyhedron
and a target tetrahedron in this section. We label the donor zonezd, and, for convenience,
define two labels for the target zone. We assume that each target zonezt has been subdivided
into nt (zt ) tets, labeled bykt . The volume of intersection is denoted byV(zd; zt , kt ). The
geometry algorithm, as designed for nonconvex polyhedra, scales asO(n f,dnt (zt )), where
the donor polyhedron hasn f,d facets and by Euler’s formula

ne,d = 3/2n f,d (4)

edges. This geometry algorithm is therefore best suited for volumes of intersection between
nonconvex polyhedra with relatively small numbers of facets, and for large, convex or
piecewise convex polyhedra, other algorithms with better scaling are available [6]. For the
remainder of Section 2 we will refer to donor facets and edges assurfacesandsegments, to
distinguish from the target.

The first step is to perform the affine transformation, to cast the target tet to the unit
tetrahedronU, with corners at

O = (0, 0, 0)
X = (1, 0, 0)

(5)
Y = (0, 1, 0)
Z = (0, 0, 1).
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By defining a fourth coordinate

h = 1− x − y− z, (6)

we castU as a regular tetrahedron in the hyperplane (6) in the four-dimensional (xyzh)
space, and therefore, most intersection calculations treat these four coordinates in a sym-
metric fashion. The determinant of the matrixM(zt , kt ) that performs this transformation
from physical coordinates (x0, y0, z0) to theU-frame coordinates (x, y, z) is

detM(zt , kt ) = 6V(zt , kt ), (7)

whereV(zt , kt ) is the volume of constituent tetkt within the target zonezt . By transforming
the donor zone, we find that

V(zd; zt , kt ) = detM(zt , kt )v(zd; zt , kt ), (8)

wherev(zd; zt , kt ) is the intersection volume between the transformed donor zone andU.
Since the donor zone is a triangular polyhedron, we compute the volume associated with
each donor surfacefd by defining a column by projecting thez> 0 portion of the triangle
onto thez= 0 plane and finding the volume of intersectionv(zd, fd; zt , kt ) between the
column for the surfacefd andU, so that

v(zd; zt , kt ) =
n f,d∑
fd=1

v(zd, fd; zt , kt ). (9)

By definition, if the donor zone lies entirely in thez< 0 half plane, the volumev is zero.
Also, if the donor zone is aboveU in the z-direction, the individual donor surfaces give
nonzerov, but the volumes associated with all of the surfaces cancel. For a simple, positively
oriented donor zone,

0≤ v(zd; zt , kt ) ≤ 1/6. (10)

The calculation ofv, for a given donor triangular surface in theU frame, requires deter-
mination of the polygonA, which lies in the interior ofU, and the polygonB, which is the
projection of the triangle from the+z direction onto theh= 0 facet ofU (Figure 1), andv
is the sum

v = v(A)+ v(B) (11)

the volume between the polygons and thez= 0 plane. In Figure 1, a donor surface is
represented by trianglePQR, with vertices (xp, yp, zp), etc. The polygons for the triangle
PQRsatisfy the following identities:

5z=0(A) ∪5z=0(B) = 5z=0(PQR∩ (z> 0)) ∩ U2 (12)

5z=0(A) ∩5z=0(B) = 0 (13)
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FIG. 1. Intersections between trianglePQRandU are vertices for polygonA, and the projection ofPQRfrom
the+z direction onto theh= 0 facet defines polygonB.

whereU2 is the triangle in thez= 0 plane, with cornersO, X, andY. The operator5z=0

denotes the projection onto thez= 0 plane. The first condition (12) states that the two
polygons fill the area of the projection of thez≥ 0 part ofPQRonto thez= 0 plane inside
U2, and the second condition is that the polygons do not overlap. The intersections that
defineA are computed symmetrically in all four coordinates, and the coordinatesz and
h only play a special role in determiningB since we have chosen to project through the
h= 0 plane onto thez= 0 plane. Sincev is computed from two-dimensional polygons,
it is sufficient to identify the vertices of the polygons, and order them by angle relative
to an interior point. If the same vertex is identified multiple times, the accuracy ofv is
not affected, but all vertices must be identified at least once. By finding volumes asso-
ciated with individual donor triangular surfacesfd, we also do not need to assume that
the donor zone is convex. We first discuss the method for computingv(zd, fd; zt , kt ) with
exact arithmetic, and subsequently show modifications needed for computer floating point
arithmetic.

2.1. Computation of Volume

We describe the calculation ofv for trianglePQRfor the case of exact arithmetic with
explicit handling of degenerate cases, where intersecting faces ofPQRandU have total
rank<3. If exact arithmetic were indeed available, we would preferably remove degen-
eracies explicitly by symbolic perturbation [7], but we present this discussion to provide a
framework for computer arithmetic calculation ofv. Our definitions for the faces ofU are
shown in Table I, and the faces ofPQRare defined in Table II. Each face is defined to be
the set of points generated by interpolating between the specified corners. We refer to the
infinite extensions of facets and edges ofU as planes and axes.

Intersection existence tests are based on the coordinates ofP, Q, and R, and double
and triple products combining these coordinates. The double products for segmentPQ
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TABLE I

Faces of U

Corners Description Polygons Corners Description Polygons

O O corner A Y, Z yz-edge A, B
X X corner A, B Z, X zx-edge A, B
Y Y corner A, B O,Y, Z x= 0 facet A
Z Z corner A, B O, Z, X y= 0 facet A

O, X x-edge A O, X,Y z= 0 facet A
O,Y y-edge A X,Y, Z h= 0 facet A, B
O, Z z-edge A O, X,Y, Z Interior Aa

X,Y xy-edge A, B

a Interior points withh= 0 are also inB.

are

cpq
xy = xpyq − ypxq

cpq
yz = ypzq − zpyq

cpq
zx = zpxq − xpzq

(14)
cpq

xh = xphq − hpxq

cpq
yh = yphq − hpyq

cpq
zh = zphq − hpzq

and the triple products forPQR, associated with the corners ofU, are

tO =

∣∣∣∣∣∣∣
xp xq xr

yp yq yr

zp zq zr

∣∣∣∣∣∣∣ , tX = −

∣∣∣∣∣∣∣
hp hq hr

yp yq yr

zp zq zr

∣∣∣∣∣∣∣ ,
(15)

tY = −

∣∣∣∣∣∣∣
xp xq xr

hp hq hr

zp zq zr

∣∣∣∣∣∣∣ , tZ = −

∣∣∣∣∣∣∣
xp xq xr

yp yq yr

hp hq hr

∣∣∣∣∣∣∣ .
We immediately eliminate the case where trianglePQRhas no area and assignv= 0 in

this case. A surface-edge intersection occurs ifPQRsurrounds the axis containing the edge
(the double products with respect to the edge are identical sign) and the two corner endpoints

TABLE II

Faces ofPQR

Corners Description Corners Description

P Vertex PQ Segment
Q Vertex QR Segment
R Vertex RP Segment

PQR Surface
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TABLE III

Edges of U

Edge Corners Double product Triple products

x X,O cyz tX, tO

y Y,O czx tY, tO

z Z,O cxy tZ, tO

yz Y, Z cxh tY, tZ

zx Z, X cyh tZ, tX

xy X,Y czh tX, tY

are on opposite sides of the surface. For thex-edge, we define the Boolean variables

Ex(PQR) = (cpq
yz cqr

yz> 0
); (cpq

yz crp
yz > 0

)
,

(16)
Dx(PQR) = (tOtX ≤ 0); (tO − tX 6= 0),

where Ex(PQR) determines that the triangle surrounds the axis.Dx(PQR) checks that
cornersO and X are not both in the same half space bounded by the plane ofPQRand
that both corners are not in the plane ofPQR(both triple products zero). If one of the triple
products is zero, the surface exactly intersects the corner, and this degenerate intersection
is permitted by our definition ofDx(PQR). The intersection is confirmed by

Ex(PQR) and Dx(PQR). (17)

Tests for other edges are derived by replacingcyz and the triple products in (16) with the
appropriate combinations from Table III.

An analogous test confirms intersections between segments andU facets. The three edges
on the facet must surround the segment, and the two vertices must be on opposite sides of
the facet. To test for intersection with thez= 0 facet we define two Boolean variables,

Fz(PQ) = (−cpq
yzcpq

zx > 0
); (−cpq

yzcpq
zh > 0

)
,

(18)
Sz(PQ) = (zpzq ≤ 0); (zp 6= zq),

and the intersection test is

Fz(PQ) and Sz(PQ). (19)

We list the double products which must all have the same sign and coordinates in the
definitions forF andS for all four facets in Table IV.

The testsF(PQ) include only nonzero double products, and we handle zero double
products as a special case, testing for degenerate intersections. The test forPQ intersecting
thex-edge (a degenerate case) is(

cpq
yz = 0

)
and

(
cpq

zx cpq
zh > 0 orcpq

xy cpq
yh < 0

)
,

(Sy(PQ) or Sz(PQ))
(20)
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TABLE IV

Facets of U

Facet Double products Coordinates

x= 0 cxh, cxy,−czx xp, xq

y= 0 cyh, cyz,−cxy yp, yq

z= 0 czh, czx,−cyz zp, zq

h= 0 cxh, cyh, czh hp, hq

and tests for the other five edges are analogous. Finally, the segmentPQintersects the corner
O if the double products for the three edges meeting atO are zero,

cpq
xy = cpq

yz = cpq
zx = 0; (Sx(PQ) or Sy(PQ) or Sz(PQ)), (21)

and the same scheme applies for the other three corners. We interpolate the quantities used
to test for intersections to compute locations of intersection points, in order to guarantee
a nonzero denominator. For example, the locationx∗ of the surface intersection with the
x-edge (17) is

x∗ = tO/(tO − tX) (22)

which ensures that 0≤ x∗ ≤ 1. For a segment intersection with thez= 0 facet (19), we
obtain

s = cpq
yz − cpq

zh − cpq
zx

x∗ = −cpq
zx

/
s (23)

y∗ = cpq
yz

/
s

with the intersection tests guaranteeing thats 6= 0 and also

0< x∗ < 1, 0< y∗ < 1, 0< x∗ + y∗ < 1. (24)

For the degenerate case of the segment intersecting thex-edge, the intersection location is

x∗ = cpq
zx

(
cpq

zx + cpq
zh

)+ cpq
xy

(
cpq

xy − cpq
yh

)(
cpq

zx + cpq
zh

)2+ (cpq
xy − cpq

yh

)2 (25)

which, given (20), produces 0< x∗< 1 for exact arithmetic. Expressions for intersections
on other facets and edges ofU are derived by substituting the appropriate combinations of
double and triple products from Tables III and IV into Eqs. (22), (23), (25). To compute
vertices ofB, we define a coordinate

H = 1− x − y (26)

and double products

cpq
10 = ypHq − Hpyq

(27)
cpq

01 = Hpxq − xpHq.
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The cornerX is a vertex ofB if the surfacePQRintersects the ray pointing upward in the
z direction fromX, so that where

E10(PQR) = (cpq
10 cqr

10 > 0
); (cpq

10 crp
10 > 0

)
,

nz = cpq
yz + cqr

yz+ crp
yz (28)

D10(PQR) = (tXnz ≥ 0),

these conditions are satisfied:

E10(PQR) and D10(PQR). (29)

Similar tests for theY and Z corners are derived by replacingc10 with c01 or cxy. The
other nondegenerate case that provides a vertex ofB is a segment intersecting the half-strip
above one of the edges ofU in theh= 0 plane, and for thezx-edge the following conditions
establish the intersection:(

cpq
xy cpq

10 < 0
)
, Sy(PQ),

(
cpq

yhcpq
xy > 0

)
. (30)

The first two conditions are the standard two-dimensional test in thez= 0 plane for the
intersection betweenPQ and they= 0 edge ofU2; the third test ensures that the segment
passes above thezx-edge ofU. The coordinates for the intersection vertex in (30) are

x∗ = cpq
xy

/(
cpq

xy − cpq
10

)
, y∗ = 0, z∗ = 1− x∗. (31)

For the segment passing above the cornerX, a degenerate case, the tests are

(c10 = 0); (Sy(PQ) or SH (PQ)),(
cpq

yh + cpq
zh

)(
cpq

01 − cpq
xy

)− cpq
yhcpq

xy < 0
(32)

with SH defined analogously toSz in (18). Finally, the vertexP is identified as a vertex of
A if it lies in the interior ofU, andP is also a vertex ofB if it lies on theh= 0 facet ofU
(If h= 0 for the entire triangle, we removeB from (11) to avoid double counting.)

After the vertices ofA andB have been found, the volume of the columns between these
polygons and thez= 0 plane is computed. The barycenterxc of the m verticesxi of the
polygon is selected as an interior point,

xc = (1/m)
m−1∑
i=0

xi (33)

and the vertices are sorted in circular order aroundxc. The volume of the column under the
polygonA, using the ordered vertices, is (wherexm= x0)

v(A) = 1

6

m−1∑
i=0

(zi + zi+1+ zc)(xi (yi+1− yc)+ xi+1(yc − yi )+ xc(yi − yi+1)). (34)

The types of nondegenerate intersections (excluding the trivial interior points) and their
multiplicities are listed in Table V. Combining with (4), a total of 39/2n f,d permutations
occur in the tests for nondegenerate intersections. For example, if the donor zone is a
tetrahedron (n f,d= 4), there are 78 potential intersections excluding degeneracies.
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TABLE V

Permutations of Intersections

Intersection Polygons Donor elements U Elements

(17) A, B n f,d surfaces 6 edges
(19) A, B ne,d segments 4 facets
(29) B n f,d surfaces 3 rays
(30) B ne,d segments 3 half-strips

2.2. Modifications for Computer Arithmetic

In floating point arithmetic, which is inexact and nonassociative, errors can affect identi-
fication and computation of intersection points betweenPQRandU. For example, the triple
producttO in Eq. (15) may, for the same pointsP, Q, andR, give a result that is positive,
zero, or negative, depending on how the (3× 3) determinant is evaluated. Here we describe
remedies for various roundoff errors. A computed quantityQ is

Q = Q̂+ δ(Q)
(35)

δ(Q) = 1(Q)η(Q),

where Q̂ is the value ofQ from exact arithmetic,1(Q) is the upper bound of the error
magnitude in the computation ofQ, andη(Q) is an unknown quantity in−1≤ η(Q)≤ 1.
Differentiating Eq. (8) gives

dV = v d(detM)+ detM dv (36)

and we focus on errors fromv since detM can generally be computed to high precision unless
zones are highly distorted. Schematically, the dependence ofv on physical coordinatesx0,
transformed coordinatesx, double productsc, and triple productst has the hierarchy:

v(x0, x, c, t) = v(x0, x(x0), c(x0, x), t (x0, x, c)). (37)

However, this can be simplified sincec andd do not explicitly depend onx0, giving

v(x0, x, c, t) = v(x0, x(x0), c(x), t (x, c)) (38)

and we use the chain rule to differentiatev:

dv(x0, x, c, t) = (∂v/∂x)(dx/dx0) dx0+ (∂v(x, c(x), t (x, c))/∂c) dc

+ (∂v(x, c(x), t (x, c))/∂t) dt. (39)

Thus, the error in computing the transformed coordinatesx is separable from the error in
obtaining the volumev from exact values ofx. The first term in (39) is bounded geometrically
since for some vertexP

|∇P(v)| ≤
√

3/2 (40)
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and for the last two terms, which contain computation errors inc and t , the U-frame
coordinates for vertexi, xi , yi , zi (and alsohi and Hi ) are exact. Two kinds of errors that
arise from computational noise are logic errors (a sign of a double or triple product changes,
changing the intersection test and causing a discontinuity inv), and computation errors
(inaccurate interpolated intersection point).

We discuss various remedies for logic and computation errors. We list the following cases
(analogous definitions follow for the other faces ofU):

• A segmentPQ lies in theh= 0 plane ifhp= hq= 0;
• A trianglePQRlies in theh= 0 plane ifhp= hq= hr = 0;
• A segmentPQ lies on thex-edge ifyp= yq= zp= zq= 0,

and initially exclude these cases. We have chosen not to use integer arithmetic since triple
products require three multiplications, reducing the precision to less than 1/3 of the number
of bits available for integers, and also because in our algorithm, the scale of trianglePQRis
not bounded. We assume that there is no underflow, so the product of two nonzero quantities
retains the correct sign.

As discussed earlier, the coordinatesx, y, z, h, H are considered exact when we deter-
mine geometry errors in theU frame, the second and third terms of (39),

1(x) = 1(y) = 1(z)=1(h)=1(H)= 0. (41)

The computed double productcpq
xy can obtain a large fractional error due to subtractive

cancellation, because

cpq
xy = xpyq − ypxq

(42)
1
(
cpq

xy

) = f · (|xpyq| + |ypxq|)

and this can affect the computed sign of the double product when∣∣ĉpq
xy

∣∣ < 1
(
cpq

xy

)
, (43)

altering the tests that establish the existence of intersections. The tests (19), (20), (21) can
fail to detect intersections if the sign patterns of the double products are inconsistent with
the linear properties of the segment. We first examine the behavior of segmentPQ with
respect to an edge ofU (Fig. 2a). The segment is oriented such that

cpq
xh > 0, cpq

yh > 0, cpq
zh > 0, cpq

yz > 0, cpq
zx < 0, (44)

and if cpq
xy = 0 the segment intersects thez-edge at pointE. A slight perturbation tocpq

xy

may occur due to roundoff error. A valuecpq
xy > 0 generates an intersection with thex= 0

facet ofU, cpq
xy = 0 intersects thez-edge, andcpq

xy < 0 gives an intersection with they= 0
facet (Table IV). Regardless of the sign ofcpq

xy , the segment intersectsU somewhere in the
neighborhood ofE, and therefore the segment-edge behavior, even with inexact arithmetic,
is consistent.

We now discuss the behavior of the segment with respect to a corner, where three edges
of U meet. Since there are three double products and each may be positive, zero, or negative,
there are 27 possible sign patterns for the double products, all of which are obtainable with
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FIG. 2. SegmentPQ has large cancellations in (a) the productcpq
xy and (b) the productscpq

yz , c
pq
zx , andcpq

xy for
the three edges that meet atO.

computer arithmetic. However, not all such combinations are geometrically consistent.
Consider the segmentPQ illustrated in Figure 2b, whereP is in the first octant andQ is in
the opposite octant, so that

cpq
xh > 0, cpq

yh > 0, cpq
zh > 0. (45)

In the illustration,cpq
xy , c

pq
yz , andcpq

zx are all subject to large cancellation errors since the
segment passes nearO. If the computed values of these double products are all positive,
or all negative, the segmentPQ fails to intersect any of the three facets meeting atO
(Table IV). Therefore polygonA may miss the vertex in the vicinity ofO, that would
have been computed using exact arithmetic, causing an incorrect result forv. Also, if two
of the three double products are zero, and the third is not, the geometry is inconsistent, and
there are a total of 14 bad cases out of the 27 possible sign patterns. Individual tests for
these cases at each corner are unnecessary, since there is a much simpler way to identify
and eliminate them. The double products satisfy the algebraic relation

cyzcxh+ czxcyh+ cxyczh = 0. (46)

For consistent geometry, either all three terms of (46) are zero, or a pair of nonzero terms has
opposite sign. If the computed geometry is inconsistent, we set the three double products for
the corner nearest to the infinite extension ofPQ to zero, causing the segment to intersect
the corner by (21). In addition, in order to facilitate triple product computation, we remove
imprecise double products, identified by∣∣cpq

xy

∣∣ < (F/ f )1
(
cpq

xy

)
(47)

by setting these double products to zero. The selection of the cancellation factorF requires
that we know something about the underlying computer arithmetic; we must guarantee that
at leastF ≥ f , but larger values ofF reduce the precision of the volume calculation. If a
double product was not set to zero andF ≥ f , its fractional error is less thanf/F , and its
sign is the same as the exact sign of the double product. We have used

F = 20 f, (48)
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so that accepted nonzero double products have less than 5% roundoff error. As for computer
precision, our ansatz is that

f = 4εm, (49)

whereεm is the machine epsilon for the floating point arithmetic. Double products set to
zero are tested for degenerate intersections.

Additional complications arise during the calculation of triple products, because in com-
puter arithmetic the value of the result, and possibly its sign, depend on the computation
formula. From Eq. (15) three different expressions fortX are

t (x)X = −hpcqr
yz− hqcrp

yz− hr c
pq
yz (50)

t (zx)
X = +zpcqr

yh+ zqcrp
yh+ zr c

pq
yh (51)

t (xy)
X = −ypcqr

zh− yqcrp
zh− yr c

pq
zh . (52)

These expressions are associated with thex, zx, andyzedges ofU, respectively. We compute
triple productst (x)X and t (x)O for the x-edge only if the double products satisfy a modified
versionĒx(PQR) of the surround testEx(PQR) in (16):

Ēx(PQR) = (cqr
yzc

rp
yz ≥ 0

)
,
(
crp

yzc
pq
yz ≥ 0

)
,
(
cpq

yz cqr
yz ≥ 0

); (53)

i.e. no two double products are opposite signs. However, if thex-edge makes a small angle
with the planePQR, all three double products int (x)X may contain large cancellations. If we
uset (x)X and

t (x)O = xpcqr
yz+ xqcrp

yz+ xr c
pq
yz (54)

to computex∗, we can write (22) as

x∗ = ξ1xp + ξ2xq + ξ3xr

ξ1 = cqr
yz

/(
cqr

yz+ crp
yz+ cpq

yz

)
, etc. (55)

3∑
i=1

ξi = 1,

demonstrating thatx∗ is a barycentric interpolation between thex coordinates of the triangle
vertices. We now define

y∗ = ξ1yp + ξ2yq + ξ3yr
(56)

z∗ = ξ1zp + ξ2zq + ξ3zr

which are mathematically zero. Imprecise cross products can lead to an intersection point
(x∗, y∗, z∗) which is within the triangle, but where the assumedx-edge intersection (x∗, 0, 0)
is outside the triangle, causing a violation of (12) and, hence, an erroneousv. Equation (55)
only constrainsx∗ to be within thex range spanned byPQRbut not within the part ofPQR
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FIG. 3. The surface of trianglePQRintersects thex-edge at a very small angle. The normal ofPQRpoints out
of the paper, andOX has a small component out of the paper, passing belowPQ and aboveQR. Exact arithmetic
gives intersectionA. Imprecise values ofcyz give a computed intersectionB, and an assumed intersection pointC
on thex-edge.

that intersects the projection of thex-edge ontoPQR(Fig. 3). We fix this interpolation by
projecting out they coordinate (we could have chosenz), creating new weights̄cyz by

α = ypcqr
yz+ yqcrp

yz+ yr cpq
yz(

ypcqr
yz
)2+ (yqcrp

yz
)2+ (yr c

pq
yz
)2

c̄qr
yz = cqr

yz

(
1− αypcqr

yz

)
c̄rp

yz = crp
yz

(
1− αyqcrp

yz

)
c̄pq

yz = cpq
yz

(
1− αyr cpq

yz

)
(57)

and substitutinḡc values forc values in (52), (54) to computet (x)X andt (x)O . For edges on the
h= 0 facet, we must project out theh coordinate in order to avoid cancellations that would
cause violation of (13) whenhp, hq, andhr are all much less than one. If two or morecyz

are zero we disallow thex-edge intersection since (55) and (57) do not guarantee a correct
x∗. Since we have selectedF to allow at most 5% error inc values, in projection (57) the
c̄ values retain the same signs asc, but for arbitraryc values, the signs are not retained.
Without using (47) to eliminate bad double products, (57) may give ac̄ with a different
sign fromc, causing the interpolation that computesx∗ to fail. If the surround test passes
for more than one of the axes meeting at the corner(Ēx(PQR), Ēzx(PQR), andĒxy(PQR)
for corner X), we select the edge with the smallest angle toPQR for the final value of
tX, preventing a triple product that is sensitive to (57) from being superseded by the value
along another edge, which contains cancellations comparable to those incyz, cancellations
whose effect ontX has not been removed by (57). A singlet value at each corner is crucial
to defining a consistent set offD tests (16), (28) for all six axes and the rays above the axes
in order to ensure that (13) is satisfied.

As described above, for the configuration in Fig. 2b the segmentPQ intersects a facet,
edge, or corner ofU, because we have disallowed inconsistent cases. The other possibility
for segment–corner behavior is thatP andQ are in opposite octants external toU andR is
located such thatPQRintersectsU. If PQ does not touchU, the surface–edge intersection
coordinatex∗ must be computed with the correct sign in order to ascertain the intersection
since theD test discards intersections withx∗< 0. We use a method analogous to (47) to
remove imprecise triple products, and a zero triple product permits an intersection exactly
at the corner.
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We now focus on the special cases listed earlier. If the segmentPQ is in theh= 0 plane,
the segment–edge tests (20) for thexy, yz, and zx edges reduce to the set of tests for
intersections between a segment and a triangle in two dimensions. A vertexP or Q inside
the triangleXYZ is treated as an interior point, and if the segment intersects a corner of
XYZ, the corner test (21) is still satisfied since we have enforced geometric consistency. By
extension, if the entirePQRis in theh= 0 plane, the calculation becomes mathematically
equivalent to computing the area of intersection between two triangles, because the surface–
edge test covers the cases, wherePQRsurrounds a corner. Since the intersection between
a line segment and a corner in two dimensions is equivalent to the segment–edge behavior
described above (by projecting along the edge so the edge collapses to a point) there are no
geometric inconsistencies in this two-dimensional computation of the area of intersection.
In addition, a projection such as (57) is not needed in two-dimensional zone intersections,
because there is no need to constrain the range of coordinates when interpolating to locate
an intersection between two segments. Therefore, as mentioned by Dukowicz [8] one may
handle special cases in two-dimensional intersections in any of a number of ways, such as
perturbing mesh points and/or double products (and not handling degenerate cases at all),
or explicit logic in the code. Finally, if the segment lies on an axis (such as thex-axis) the
only possible intersections are (21) if the segment passes through an endpoint of the edge,
or interior points inside the edge. This is effectively a one-dimensional intersection, a trivial
calculation.

To summarize, the geometric calculation ofV(zd; zt )has been facilitated by decomposing
the target zones into simplices and the donor zones into triangular polyhedra. The linear
transformation to theU frame has allowed us to treat all four facets of the target tet in
a symmetric fashion, and the geometric closure condition (46) is explicitly symmetric in
the four coordinates. Enforcement of consistency causes the assignment of zero double
products, which must be handled as special cases, so that, unlike the two-dimensional
case [8], we cannot simplify the algorithm by preemptively removing degeneracies. In
addition, due to roundoff error in double products, a projection algorithm (57) must be
applied in order to properly constrain the interpolation for intersections that depend on
triple products.

3. APPLICATION: FIRST-ORDER DIRECT REMAPPING

Here we describe the use of grid intersections to perform first-order direct remapping. The
distinction between direct (general) and incremental (continuous) remapping has been dis-
cussed by Dukowicz and Kodis [5, 8]. In incremental remaps, the target mesh is constructed
by displacing the nodes of the donor mesh, and the displacement is generally small, com-
pared with the spacing between nodes. During an adaptive Lagrangian–Eulerian (ALE)
hydrodynamics simulation an iterative mesh relaxation algorithm such as the Winslow–
Crowley [9] method is applied to reduce distortions in the mesh, followed by an incremental
remap to reset the physical fields. Incremental remaps have been accomplished in two di-
mensions using geometric area of intersection calculations [10], but most ALE codes in two
and three [11] dimensions use advection [12] to perform incremental remaps. Typically, an
ALE code will perform a small number of relaxation and remap iterations per Lagrangian
physics cycle. The incremental remaps are therefore performed quite frequently, perhaps one
or more times per physics cycle during a hydrodynamics simulation and, therefore, the accu-
racy of the incremental remap has a major impact on the overall accuracy of the simulation.
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A direct remap is the transfer of a physical system from one mesh to an unrelated target
mesh. Direct remapping has been studied in two dimensions [8, 13, 14] and three dimensions
[4]. For the 2d case, Dukowicz and Ramshaw [8, 13] have shown that the density fieldq(x)
defined within each donor zone may be represented as the divergence of a vector field,
and by Gauss’ theorem the integral of the field over the region of intersection between a
donor and target zone may be replaced by line integrals over the boundaries of donor and
target zones. In a different approach, Miller [14] defines the field as the curl of a potential
and uses Stokes’ theorem to define a line integral. Both of these approaches simplify the
mathematical form of the remap by reducing the dimensionality of the integral, and when
the field within a zone is a complicated analytic form requiring numerical integration to
complete the remap, there is a clear advantage to using the divergence theorem to define a
surface or line integral. In our case, for a first-order remap,V(zd; zt ) is computed exactly
from the intersection points.

3.1. Overview of Remap Procedure

In this section we review various aspects of remapping. Since the donor zone boundaries
do not conform with target zone boundaries, the target zone will acquire a mixture of
materials if different intersecting donor zones contain different materials. For a mixed zone,
the material number, volume fraction, and field quantities are stored separately for each
component material within the zone (we find that a linked list is particularly convenient),
and the volume fractionsfi for materiali must satisfy the closure condition∑

m

fm = 1. (58)

In a pure Lagrangian hydrodynamics simulation, the incoming donor zones are all clean
(single material), unless mixed zones were in the initial state of the problem. We consider
the case of clean donor zones in this article. However, the geometry algorithm (Section 2)
is capable of handling figures other than hexahedra, as would be obtained by breaking
a mixed donor zone into parts. Usually, we are interested in remapping zone-centered
fields and node-centered fields together, since a hydrodynamics simulation may provide
a combination of fields with different centerings, such as zone-centered mass density and
node-centered momentum, and we bisect hexahedral zones in order to simultaneously remap
these fields.

3.2. Hexahedron Geometry

Each hexahedral zone is associated with a list of eight corner nodes for each zone, and
these nodes are ordered so that 12 edges may be inferred, connected topologically as a cube.
A 33 subgrid (Fig. 4a) is constructed by interpolating between the corner nodes with the
subgrid points parameterized by

x(α, β, γ ) : (α, β, γ ) ∈ {0, 1/2, 1} (59)

with a trilinear interpolation, so for example, in theα direction,

x(1/2, β, γ ) = 1/2(x(0, β, γ )+ x(1, β, γ )) ∀β, γ. (60)

The interpolation parameters for the labeled points in 4a are given in Table VI.
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TABLE VI

Labeled Interpolation Points, Fig. 4a

(α, β, γ ) (α, β, γ ) (α, β, γ )

0 (0, 0, 0) 5 (1, 0, 1) c (0, 1/2, 1/2)
1 (0, 0, 1) 6 (1, 1, 0) d (1/2, 0, 0)
2 (0, 1, 0) 7 (1, 1, 1) e (1/2, 0, 1/2)
3 (0, 1, 1) a (0, 0, 1/2) f (1/2, 1/2, 0)
4 (1, 0, 0) b (0, 1/2, 0) g (1/2, 1/2, 1/2)

Each hex face comprises nine subgrid points, and the face is divided into eight triangular
facets, as shown in Fig. 4b. The pairs of triangles on the same face sharing an edge are
coplanar, so therefore our representation of the full zone, although comprising 48 triangles,
encloses the same volume as a 24-faceted triangular polyhedron, a tetrakis hexahedron
(TH). Dukowicz and Padial [4] have represented a hex face by a hyperboloid constructed
from a bilinear interpolation between the nodes. However, the total volume of the zone
with hyperboloid surfaces is the same as the TH zone volume, and many physics codes do
not depend on the detailed shape of the zone boundary. The TH face may be considered
as a nine-point approximation to the hyperboloid boundary, with a systematic difference

FIG. 4. Bisection of hexahedron: (a) full zone and 33 subgrid; (b) triangular facets on the front surfaces of
this zone. Pairs of facets adjoining at dashed lines are coplanar: (c) lower left front subzone of zone (a); (d) one
of the six tets in the decomposition of the subzone (c). The other five tets are 0eag, 0cbg, 0bfg, 0deg, and 0fdg.
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between the two representations in the spatial distribution of physical field quantities, but
not in the globally integrated quantities.

The next step is to complete a subzone. We begin with the six facets (out of 48) that
meet at the nodex0= x(0, 0, 0). Eight points, the mesh nodex0 and interpolated pointsxa

throughxg in Fig. 4a, are subzone vertices. The boundary of the subzone is completed by
constructing six facets that connect the central pointxg with xa throughx f . The resulting
subzone (Fig. 4c) contains 12 facets and 8 vertices, of which two vertices (x0 andxg) are
of order 6 and the other six vertices are order 4. For a donor mesh withNd hex zones and
a target mesh withNt hex zones, we actually map 8Nd subzones onto 8Nt subzones. We
label subzones of the donor zonezd aszd,s. The total nodal volume,v(nd) of nodend is the
sum of volumes of associated subzoneszd,s, from different donor zones, that containnd as
a corner,

v(nd) =
∑

zd,s:nd=n(zd,s)

v(zd,s), (61)

wheren(zd,s) is defined to be the mesh node that is a corner of the subzonezd,s. In a
structured mesh, eight subzones meeting at each node (except the boundary nodes) define
the basis volume for mapping nodal fields. Central points of zones are corners of nodal
basis volumes, and thus the nodal basis volume is a 48-faceted polyhedron with the same
connectivity as the 48-faceted polyhedron as we have used to represent the zone volume.
For the intersection volume calculation, as discussed in Section 2, the target subzone is
decomposed into six tets using the long diagonal (LD) method (Fig. 4d). To decompose the
subzone into five tets using the corner slicing method would effect a different definition
of the facets and edges of the subzones, breaking the symmetry between the polyhedra for
nodal and zonal basis volumes.

After decomposing the target subzone into tets, we computeV(zd,s; zt,s)using the method
of Section 2. In the calculation ofV(zd,s; zt,s) there are 234 permutations of nondegenerate
intersection tests per target tet (12 donor facets, 39/2 permutations per facet), or a total
of 1404 permutations per target subzone (six tets per subzone). In the two-dimensional
generalization of this algorithm, the donor zone is a quadrilateral, and the target quadrilateral
is split into two triangles. There are 20 permutations of tests per target triangle (each of the
four donor segments is tested against the three target edges ofU2 and the two rays pointing
in the+y direction atx= 0 andx= 1), or 40 total. In addition, there are eight subzones in
3d but only four in 2d, typically causing a factor of 2 increase in the number of nonzero
V(zd,s; zt,s) in 3d relative to 2d (for example, consider a mesh remapped onto itself). The
number of possible nondegenerate intersections is therefore about 70 times greater per full
donor zone in 3d than per full zone in 2d.

3.3. Filtering

In the filtering process, pairs of donor and target zones are preselected before proceeding
with the intersection calculation. Our goal is to perform the full geometry calculation only for
zone pairs with nontrivial intersections. One may contrive arbitrarily large donor and target
meshes, where all donor zones meet all target zones, thus rendering filtering ineffective.
Therefore, filtering is not guaranteed to reduce the computer resource requirement below
O(Nd Nt ), whereNd andNt are the total numbers of donor and target zones, but if donor and
target zones are sufficiently localized, filtering can bring considerable benefits, reducing
the time requirement toO(Nd log Nd) in most practical remap problems.
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We find the Cartesian bounding box surrounding the initial donor domainD0 (a domain
is the entire set, or a subset, of donor zones) by identifying the minimum and maximum
coordinates in each direction,

xmin(D0) ≤ x0 ≤ xmax(D0) ∩
ymin(D0) ≤ y0 ≤ ymax(D0) ∩ (62)

zmin(D0) ≤ z0 ≤ zmax(D0).

We compute the bounding box limits of each target zonezt and test for intersection between
the bounding box forzt and the donor domain bounding box, to obtain the initial list of
target zones that matchD0. We rank donor zoneszd in D0 according to the maximumx
coordinate,xmax(zd), to splitD0 as evenly as possible (ties are broken arbitrarily) into two
subdomains,D1 andD2. The Cartesian boxes (62), forD1 andD2 are enclosed within the
D0 box, and therefore from the initial target zone list forD0 we select lists forD1 and
D2. Recursive subdivision of the subdomains, rotating among thex, y, andz coordinates
for demarcation, allows us to successively weed out target zones, until we obtain a donor
subdomain with one donor zone (or subzone). We only need to simultaneously store one
direct line of descendants of donor subdomains. Except for the lists of matching target zones,
we only store collective information about the donor subdomains (by passing pointers toD0

arrays into subdomains), limiting memory usage by the filtering process to roughly several
timesNt integers. This filtering method has been applied to both structured and unstructured
hex meshes.

We apply a second stage of filtering after transforming the donor zone (or subzone) into
theU frame for each target tet. If the entire donor zone falls into any of the half spaces

x ≤ 0, y ≤ 0, z≤ 0, h ≤ 0,
(63)

x ≥ 1, y ≥ 1, z≥ 1, h ≥ 1,

thenv(zd; zt , kt )= 0 and the intersection calculation is not performed. We have found that
it is advantageous to invest computer time to perform this test before proceeding with the
full calculation ofv(zd; zt , kt ).

3.4. Tests of Filtering

We provide results for a simple test of the bounding box filtering algorithm using struc-
tured meshes. The target is a regular Cartesian grid with spacinga and 18 zones (36
subzones) in each direction. The donor zones are rectangular, with dimensions (`a,a,a),
rotated so the direction of elongation is 1/

√
3(1, 1, 1). In this case, the bounding box vol-

ume is proportional tò3 in the largè limit, while the volume of the zone is proportional to
`, leading to inefficient filtering. The number of donor zones intersecting the target domain
is roughly proportional to 1/`. The filtering efficiency is defined as the ratio of number of
nonzero volumesv(zd,s; zt,s, kt ) with U to the total number of overlap volume calculations
that are carried out (in practice we use a threshold|v|> F to avoid counting volumes of “zero
plus roundoff error”). The donor domain has 36 zones (72 subzones) in each dimension,
centered at

(9a, 9a, 9a)+ 1/(2
√

3)(`a,a,a)

so that for`≥ 1 the donor domain completely encloses the target domain. For`= 32 the
bounding boxes for some donor subzones encompass several thousand target subzones. We
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TABLE VII

Performance: Elongated Meshes

Elongation,̀ CPU time (s) Nonzero volumes Efficiency

1 111.2 1731536 0.608
2 98.1 1382498 0.538
4 110.1 1214546 0.406
8 160.9 1122467 0.245

16 319.3 1077336 0.115
32 770.9 1059208 0.048

compare performance for 1≤ `≤ 32 in Table VII, where (63) has also been applied. As`

increases, the filtering becomes less efficient, permitting more calculations ofv between
nonintersecting zone pairs and reducing performance. However, a smaller` (smaller donor
zones) causes more donor zones to fit within the target volume, thus increasing the number of
nontrivial intersections, so that`= 1 takes more time thaǹ= 2, despite a higher efficiency.
This test suggests that a more sophisticated filtering algorithm may increase performance
when zones are highly elongated.

We compare various geometries commonly used in three-dimensional physics problems.
The full implementation of the code contains the filtering stages described in Section 3.3
and Eq. (63) and several other filters buried within the geometry algorithm to weed out
unnecessary intersection tests. Therefore, different logic and arithmetic operations are per-
formed for different donor trianglesPQRin theU frame, and by testing the algorithm with
various meshes we can gain insight into the effect of mesh geometry on performance. For
this test, we have defined three meshes, each with 5832 zones. The first mesh is a regular
cubic 183 Cartesian grid with grid spacinga centered at (9a, 9a, 9a). In the second mesh
the nodes are arranged in a cylindrical geometry with a radius of 9a and 6 radial zones, 18
zones spanning a length of 18a, and 54 angular zones, also centered at (9a, 9a, 9a). This is
not a true cylindrical mesh, because the zone boundaries are linear interpolations between
the nodes rather than arcs. The third mesh is a structured 183 grid, with the nodes arranged
as a tetrahedron whose base is the equilateral triangle

(4.8a, (9+ 4.2
√

3)a, 0.6a),

(4.8a, (9− 4.2
√

3)a, 0.6a),

(17.4a, 9a, 0.6a)

with apex (9a, 9a, 17.4a). At the apex, all of the nodes in a logical plane meet, resembling
the convergence of nodes at the origin of a spherical mesh. The meshes are illustrated in
Fig. 5, and the results are shown in Table VIII. In the last three rows, the meshes labeled
“+” have been displaced by 10−8(a,a,a). In all of these tests we have verified global and
local mass conservation, ensuring that the geometry algorithm has successfully computed
the grid intersections, despite coincidences between the locations of donor and target nodes,
edges, and facets. Although all three meshes have the same number of zones, the total CPU
time ttot for the remap varies by more than a factor of 7 for the range of mesh geometries
shown here. However, the average CPU time,taveper geometric calculation ofv(zd,s; zt,s, kt )

(ratio of ttot to number of calculations) shows much less variation. Efficiency varies widely,
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TABLE VIII

Remap Results, Three-Dimensional Geometries

Full calculations of CPU timeb (µs) per Total CPU
Donor mesh Target mesh v(zd,s; zt,s, kt )

a calculation ofv time (s)

Cartesian Cartesian 1.13× 106 66.1 74.6
Cartesian Cylinder 1.91× 106 45.9 87.6
Cartesian Tetrahedron 0.97× 106 39.0 37.8
Cylinder Cartesian 2.06× 106 45.2 93.1
Cylinder Cylinder 2.34× 106 61.7 144.4
Cylinder Tetrahedron 3.91× 106 36.0 140.6
Tetrahedron Cartesian 0.65× 106 50.3 32.8
Tetrahedron Cylinder 1.48× 106 51.3 76.0
Tetrahedron Tetrahedron 4.41× 106 55.2 243.4
Cartesian Cartesian+ 1.57× 106 45.2 70.9
Cylinder Cylinder+ 2.62× 106 46.0 120.6
Tetrahedron Tetrahedron+ 3.35× 106 51.0 170.5

a After application of (63).
b Measured on a 440 MHZ DEC Alpha.

from 0.06 for the tetrahedron self-remap to 0.79 for the Cartesian donor and tetrahedron
target. When the donor and target subzones meet at a face, edge, or point, the decision
made by (63) of whether to proceed with the geometric calculation ofv(zd,s; zt,s, kt ) may
be influenced by roundoff effects during the affine transformation to theU frame, making

FIG. 5. Meshes for remap tests: (a) Cartesian; (b) cylindrical; (c) tetrahedron; (d) tetrahedron as donor mapped
into cylindrical target (contour approximating reconstructed interface).
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an accurate prediction of filtering performance difficult in such cases. When the target
mesh is displaced slightly, relative to an identical donor mesh, donor zones acquire a small
intersection volume with neighboring zones, requiring more computations of nonzerov.
However, this is compensated by other donor–target pairs that are separated by displacement,
allowing the first stage recursive filtering to discard such pairs and avoiding the expense of
the affine transformation. The overall result is a reduction ofttot in our test cases. Except
for the self-remaps, the average timestave vary between 36.0 and 51.3 microseconds per
calculation ofv on a 440 MHz DEC Alpha, and the average time for the Rayleigh–Taylor
remap, nearly 37µs, falls within this range. These tests with different geometries show that
total CPU time is highly dependent on the number of computations ofv, emphasizing the
importance of filtering.

3.5. Rayleigh–Taylor Instability

To demonstrate successful remapping of highly distorted meshes and to examine the
effect of domain decomposition on performance, we have constructed a Lagrangian hy-
drodynamics simulation of a configuration with a Rayleigh–Taylor instability. The mesh
is a (25× 25× 50) hexahedral grid. The outer boundary of the problem is a rectangular
box, elongated in thez direction, with horizontal lengthsLh= 25a and vertical length 50a.
The grid is initially regular in thex and y directions, and the nodes are displaced from a
regular grid in thezdirection in a sinusoidal pattern. The initial coordinates for node (i, j, k)
are

x = ai (64)

y = aj (65)

z= ak+ (a/2)(1− |k− 25|/25) sin(2πx/Lh + π/4) sin(2πy/Lh + π/4). (66)

The top 25 zones in each column are filled with a heavy fluid with densityρh, and the
bottom 25 zones contain a light fluid with density

ρl = 0.5ρh. (67)

To simplify this test simulation, both fluids are treated asγ = 5/3 ideal gases. A uni-
form gravitational field in the−z direction is balanced by an upward pressure gradient
to remove the free-fall acceleration. The sinusoidal displacement profile serves as the ini-
tial seed for the growth of the Rayleigh–Taylor instability, and the zones themselves are
clean (single material). Upon simulation using Lagrangian hydrodynamics, the displace-
ment has grown as a function of time, and the mesh has become highly distorted (Figs. 6a
and 8). In Fig. 8 we have illustrated a boomerang zone; the mesh also contains some self-
intersecting zones. For our purposes, the distorted mesh has already been provided, and
we utilize it to test the remapping capability. We remap the physical fields (both zone- and
node-centered) from this distorted mesh onto another mesh which is closer to an orthog-
onal grid. We use a Cartesian target mesh of (26× 26× 50) zones, each zone possessing
horizontal dimensions(25/26)a and vertical dimensiona, so that the node coordinates
are

(x, y, z) = ((25/26)ai, (25/26)aj,ak) (68)
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FIG. 6. Remapping example, a Rayleigh–Taylor unstable physical configuration. Gravity along the long axis
of mesh causes acceleration of heavy fluid (shaded) into light fluid (transparent). Heavy fluid region is shaded (a)
after Lagrangian simulation leads to highly distorted mesh, (b) after remap onto Cartesian mesh.

and a distorted mesh, where nodes with only odd indices are displaced,

(x, y, z) = ((25/26)a(i + 0.1η), (25/26)a( j + 0.1η),a(k+ 0.1η))
(69)

η = (i mod 2) · ( j mod 2) · (k mod 2).

Except at the problem boundary, 50% of the hex faces become nonplanar under distor-
tion.

The resulting interface between the light and heavy fluids on the mesh after the remap onto
the Cartesian mesh is shown in Fig. 6. In Table IX we show the change|δM | in the integrated
mass densityM , demonstrating that global mass conservation is accurate to within several
bits of machine precision. We have found similar accuracy in the conservation of global
momentum, based on the remap of the node-centered momentum density. As an additional
test for each donor and target subzone we have tested the sum rules

V(zd,s) =
∑
zt,s

V(zd,s; zt,s)

(70)
V(zt,s) =

∑
zd,s

V(zd,s; zt,s)

TABLE IX

Rayleigh–Taylor Problem Remaps

Target mesh Target domains CPU timea (s) |δM |/M

Cartesian 1 596.8 3.6× 10−14

Cartesian 8 598.8 3.3× 10−14

Distorted 1 608.6 2.0× 10−14

Distorted 8 611.9 3.2× 10−14

a Measured on a 440 MHZ DEC Alpha.
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FIG. 7. Corresponding density contours of the centralx-slice for the configuration shown in Fig. 6, (a) before
and (b) after remapping.

to ensure that the summed intersection volumes for each donor and target subzone do not
fractionally exceed (in magnitude) the total subzone volume by more than a threshold of
10−12. The conservation of mass to nearly machine precision (Table IX) illustrates the ability
of our grid intersection algorithm to handle meshes with distorted and self-intersecting
zones. Using the second filtering stage (63) we obtain 64% efficiency in remapping this
Rayleigh–Taylor problem for both target meshes. The density profile of a cross section
is shown in Fig. 7. The spreading of the contour lines, especially near the fluid interface,
illustrates diffusion that occurs as a consequence of the remapping process. Dukowicz and
Kodis [5] have shown in a two-dimensional calculation that the diffusion can be mitigated
with a second-order remap.

In Table IX we have also shown the effect of domain decomposition of the target mesh on
performance. In a conventional remap on a serial machine, the entire target mesh is supplied
as one domain and filtering selects target zones that match a donor zone, using the entire
pool of target zones as a starting point. However, we may choose to treat the whole target
as the union of multiple target meshes (domains), each with a portion of the original target.
The donor domain is mapped onto each target domain separately, with the filtering repeated
for each target domain. We have decomposed the full target into eight domains of dimension
(13× 13× 25) zones and found that the extra filtering leads to only a marginal increase in
total CPU time (Table IX). This demonstrates the feasibility of a parallel implementation,
in which each of the target domains would be kept on a separate processor, suggesting that
with well-designed domain decomposition and communication methods, the remapping
algorithm can potentially scale efficiently on parallel platforms. The reason for this is that
the filtering algorithm can select and remove nonintersecting donor–target zone pairs in a
small fraction of the time needed to accomplish an intersection calculation ofV(zd,s; zt,s)

for zones that do match.
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FIG. 8. A nonconvex zone resulting from running Lagrangian hydrodynamics to simulate the growth of a
Rayleigh–Taylor instability. Six different views of the zone are shown, representing successive rotations about the
horizontal axis.

4. APPLICATION: REGION OVERLAYS

Here we discuss the application of the geometric grid intersection algorithm to region
overlays. In region overlays, a donor region within an arbitrary target mesh is filled with
homogeneous material, and the boundary of this region does not conform to mesh zone
boundaries, allowing some zones to be partially filled with the overlay material. Hence, the
region boundary after the overlay is represented by volume fractions of the region’s material
in mixed zones that partially intersect the region. Typically the region is a shape, such as
a sphere, specified using collective parameters, such as the radius and the location of the
center. Region overlays may be applied when it is not convenient to design a mesh that
conforms simultaneously to different regions containing different materials. The essential
requirement of region overlays is to compute the volume of intersectionV(R; zt ) between
the regionR and each zonezt of the mesh. General shapes with curved boundaries would
require nonlinear intersection calculations to obtain the exact value ofV(R; zt ), but since
the complexity and expense of such calculations increases rapidly with the order of the
shape boundary and a fast calculation of intersection volumes is necessary to make the
overlay procedure practical for meshes with hundreds of thousands of zones per processor,
we construct a set of triangular polyhedraPi to approximate the region and implement the
polyhedron intersection algorithm described in Section 2 to estimateV(R; zt ) by

V(R; zt ) ≈
∑

i

V(Pi ; zt ), (71)

whereV(Pi ; zt ) is the intersection volume of thei th polyhedron with the zonezt .

4.1. Triangulation

A finite approximation ofR using polyhedral elements is associated with an approxima-
tion of its surface boundary with triangular patches. The elements form a decomposition of
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FIG. 9. Polyhedra derived from bisecting patches that approximate the surface of (a) sphere centered atC;
(b) cylinder. The triangular prism (b) is converted to an octahedron by drawing segmentsPQ,RS, andTU.

the figure bounded by the patches. Two cases of special interest, which we describe here,
are spheres and cylinders. Polyhedral approximation methods for spheres are well known
and can be generalized for any star-shaped object for which the radiusr is a continuous and
first-differentiable function of the angular coordinatesΩ. The polyhedra are constructed by
inscribing a regular octahedron within a sphere and by using the midpoint projection method
[16] to recursively bisect the triangular patches, producing a hierarchy of approximations
to the sphere. For this bisection (Fig. 9a), from a triangular patchSTUwith vertices on the
surface of the sphere, one constructs pointsP, Q, and R by projecting the line segments
TU,US, andSTfrom the center of the sphere onto its surface. These six points define an
octahedron, four of whose facets are new surface patches, and each of these new patches
approaches 1/4 the area and 1/2 the linear dimensions of the original patchSTUas the solid
angle ofSTUapproaches zero. Recursion levelm is a polyhedron that containsNp patches
andNd donor octahedra, with

Np = 2× 4m

(72)
Nd = (2× 4m − 5)/3.

The total volume of the polyhedravp from this bisection method, compared with the sphere
volumevsph, in the limit asm approaches infinity, is

(vp − vsph)/vsph∼ −12.07/Np. (73)

The volume of intersection between each octahedron and each zone is computed to obtain the
approximate shape–zone intersection volume through (71). This bisection method suffers
from the well-known problem that at any given level of bisection the patches are smallest
near the vertices of the initial octahedron, with less resolution elsewhere, but by increasingm
to improve the overall accuracy of the calculation we can reduce the effects of this problem.

The recursive bisection is handled differently for a cylinder. The cylinder of lengthlcyl is
cut intonb slices of thickness

ls = lcyl/nb. (74)
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For a given slice an equilateral triangular prism is inscribed by drawing triangles on the disks
at each end of the slice and connecting corresponding vertices along the length of the slice.
The resulting figure is a triangular prism which is cast as an octahedron by triangulating the
rectangular facets. In the bisection (Fig. 9b), pointsQ andR are the midpoints of segments
PT andUS, respectively, projected from the axis onto the surface of the cylinder. We hold
ls constant and use an inherently one-dimensional method to approximate the circular disk
with the polygon. The total number of rectangular patches and octahedra form levels of
recursion is

Np = nb(3× 2m)/2
(75)

Nd = nb(3× 2m − 4)/2.

A one-dimensional bisection method is effective because the cylinder is a ruled surface (its
curvature is zero in one direction), and the error decreases more rapidly as a function ofNp

for a cylinder than for a sphere,

(vp − vcyl)/vcyl ∼ −6.58n2
b

/
N2

p, (76)

and, therefore, the number of elements (polyhedra) inR as a function of volume accuracy
increases more slowly for a cylinder than for a sphere. For both the sphere and the cylinder,
the systematic volume error asymptotically scales as 4−m for large m. In our examples
of overlays of spheres and cylinders, we use the same geometry algorithm described in
Section 2 for computing polyhedron intersections to computeV(Pi ; zt ). The target meshes
are still composed of tetrakis hexahedra, but the donor zones, instead of 12 or 24 faceted
polyhedra derived from hexahedra, now form an unstructured hierarchical list of octahedra.

It is also possible to map a sphere or cylinder onto an arbitrary mesh by creating a donor
hexahedral mesh with nodes arranged in the geometry of a sphere or cylinder and applying a
general remap. However, this conventional donor mesh gives a less accurate approximation
of the sphere or cylinder than the specialized decompositions described above. If we con-
sider a structured mesh, designed with an overall spherical geometry, withnr radial zones,
πnr zones in the polar direction, and 2πnr azimuthal zones, for a total number of donor
zones

Nd = 2π2n3
r , (77)

the zones on the surface at the equator approximate cubes with side lengthr/nr in the limit
of largenr and the solid angle of one such equatorial zone is

Ä = 1
/

n2
r sr

= (Nd/2π
2
)−2/3

. (78)

For the sphere approximation, the average solid angle per patch is

Ä = 4π/Np

= 4π(3Nd + 5)−1. (79)
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This surface patch bisection method therefore improves the accuracy of the region overlay by
concentrating the smallest donor elements (octahedra) near the surface and also performs
well because the octahedra become smaller with each successive bisection, so that their
bounding boxes match fewer target zones. If we were to design a donor hex mesh with one
radial zone (so that all zones are pyramid-shaped with four nodes coincident at the center of
the sphere) the solid angle would scale asN−1

p as in (79), but the long, pencil-shaped zones
would create large bounding boxes and, therefore, require a more elaborate filtering scheme
than we have implemented here (see Section 3.3). Development of specialized polyhedral
approximations of a regionR requires knowledge of the analytic form ofR, and for our
first-order remap, homogeneous fields throughout its volume.

4.2. Filtering for Region Overlays

As in Section 3.3, we seek to select only zones and octahedra for which the result
is nontrivial before proceeding with the geometry calculation. For example, a recursion
level of m= 9 on a sphere of 20 zones radius produces accuracy of about 10−4 in overlay
volume fraction (ratio of intersection volume to target zone volume), and contains 219

surface triangles and 174,761 octahedra, which for a target mesh of 403 zones produces
over 1011 potential combinations of source octahedron and target tetrahedron. We describe
the various preselection filters in detail for a sphere shape, and filter methods for many other
shapes are analogous. Unlike for zonal remapping, we cannot simply draw a bounding box
around a constituent octahedron, analogous to (62) for the remap, because descendants of
the octahedron may protrude outside that bounding box, thus causing target zones to be
prematurely dropped from the list. Therefore an enlarged bounding box, which accounts
for the curvature of the sphere, is constructed.

Because the material inside the sphere is homogeneous, we do not explicitly compute
the volume of intersection for zones known to be completely enclosed within the sphere.
The sphere of radiusrs is centered at (xc, yc, zc) in physical coordinates and the distance

r 2
i = (xi − xc)

2+ (yi − yc)
2+ (zi − zc)

2 (80)

for each node is calculated. For a zone bounded by eight nodes, if the maximum nodal
distanceri for each nodei satisfies

max
(
r 2

i

) ≤ r 2
s , (81)

the zone is inside the sphere and assigned an intersection volumeV(R; zt ) equal to the
full target zone volumeV(zt ). Likewise, we identify exterior zones, with a zero overlap
volume, by

min
(
r 2

i

) ≥ r 2
s + `2/4, (82)

where`2 is the diagonal length of the Cartesian rectangular solid surrounding the zone,
added to account for the possibility of the sphere invading the zone between the nodes.

The initial list of zones assigned to the initial octahedronP0 is the set of zones satisfying
neither (81) nor (82) and the overlay calculation is enacted betweenP0 and these zones.
Using the bisection procedure from Section 4.1, we defineP1 to be one of them= 2
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octahedra derived from the bisection of aP0 facet. If thex-coordinate ofP1 is bounded
by

x0 ≤ x ≤ x1, (83)

the limits for the enlarged bounding box are

ρ2 = r 2
s − `2

PQR

/
4

x̃0 =
{

x0− (xc − x0)rs/ρ (x0 < xc),

x0 (x0 ≥ xc);
(84)

x̃1 =
{

x1+ (xc − x1)rs/ρ (x1 > xc),

x1 (x1 ≤ xc),

where`PQR is the diagonal length of the Cartesian box surroundingPQRin Fig. 9a. Zones
from theP0 list with bounding boxes that intersect the enlargedP1 box are selected for
intersection calculations withP1. By using these enlarged boxes, we ensure that the box for
each descendant octahedron is contained within the parent’s box, and therefore, the zone
selection by recursive elimination is consistent. For a cylinder, we also enlarge the donor
bounding boxes to account for curvature.

4.3. Examples of Region Overlays

We show examples of overlays of spheres and cylinders, onto regular Cartesian and
distorted target meshes. The Cartesian mesh contains 50 cubic zones of lengtha in each of
the three directions for a total of 125,000 zones, and the nodes are logically numbered from
0 to 50 in each direction. The center of the sphere is located at the physical center of the
cube enclosing the mesh, and we overlay spheres with radii of 1a, 10a, and 25a. For the
distorted mesh, nodes whose logical coordinates are all odd are displaced by

0.02(a,a,a)

(no nodes on the boundary are displaced). In the region overlays, only zone-centered fields
are applied to the target. A tetrahedral decomposition for the 24-faceted TH target zone is
used, with an average of about 12 tets per zone if all zone boundaries are nonplanar, or six
tets per zone if all boundaries are planar. In our distorted mesh, 50% of the zone boundaries
for interior zones (away from the domain boundary) are nonplanar. For the cylinder, the
length is 50a along one Cartesian direction, and we use radii of 1a, 10a, and 25a. We have
used for the cylinder

ls = floor(lcyl/at )

at = (Vt/Nt )
1/3,

(85)

whereVt is the total volume of the target mesh,Nt is the number of zones, andat is an
estimate for the average length of a zone, which yieldsnb= 50 slices for our test cylinders.
In Fig. 10, we show the CPU times for spheres and cylinders on a single 440 MHz DEC
Alpha for various radii and levels of bisection, and we also compare the Cartesian mesh with
the distorted mesh which contains surface tets on nonplanar faces. The filtering saturates at
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FIG. 10. CPU time required to overlay (a) spheres and (b) cylinders of various radii onto Cartesian (dashed)
and distorted (solid) meshes, as a function of number of bisection levels,m.

largem when the donor elements (octahedra) become point-like for a sphere, or filament-
like for a cylinder. For example, a donor octahedron and all of its progeny may reside within
a single target zone, and if no other target zones’ bounding boxes touch the octahedron all
progeny will contain only that one target zone as their lists of matching zones. The total
number of elementsNd at layerm increases by a factor of 4 per layer for a sphere, but
only 2 per layer for a cylinder, so we expect that for largem when the element volume
becomes much smaller than a zone volume (and filtering saturates), the computer time
spent on geometry will asymptotically scale asNd∼ 4m for the sphere and asNd∼ 2m for
the cylinder (linearly withNd). At the larger values ofm the sphere time increases more
rapidly as a function ofm than does the cylinder time. Even in going fromm= 10 tom= 11,
however, the increases of both the sphere and the cylinder CPU times are still considerably
less than linear inNd, suggesting that the filtering has not quite reached saturation.

5. GRID INTERSECTIONS IN HYDRODYNAMICS

We perform tests of the remap and region overlay calculations as they relate to hydrody-
namics simulations of two test problems, the spherically symmetric expansion of an ideal
gas [15] with specific heat ratioγ = 5/3 and the Sedov spherical shock wave [15]. We
consider a situation where it is necessary to represent the physical system on a Cartesian
mesh after the simulation and measure the total energy lost to momentum diffusion. For
example, a postprocessing code may require a Cartesian grid. The hydrodynamics code
uses a second-order explicit Lagrangian predictor–corrector acceleration algorithm, and
after every Lagrange cycle the mesh nodes are shifted in order to reduce distortion and
an incremental remap, based on a stripwise implementation of a second-order advection
procedure [12], is used to transfer material to neighboring zones on the adjusted mesh. The
amount of transfer between neighboring zones is computed directly from the displacement
of nodes on the boundary between the two zones during mesh relaxation. During the advec-
tion a gradient limiter is applied [12] to prevent the formation of artificial critical points, and
thus, the advection is not strictly second-order accurate everywhere. These second-order
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Lagrange and advection procedures have recently been applied in 3D laser physics simu-
lations [11]. We consider two schemes for arriving at a Cartesian mesh at simulation time
t = T , beginning with a Cartesian mesh att = 0:

(1) Relax the nodes to the original Cartesian positions after every cycle, and remap the
fields.

(2) Relax the nodes using a local equipotential method [9] and remap after every cycle
an ALE method, allowing the mesh to deform over time. Remap directly to a Cartesian
mesh att = T .

For both tests, we begin with a 403 Cartesian mesh with total side length 6 cm and the
coordinate origin at a corner. The background gas in the expansion (rarefaction) wave has
densityρ and specific internal energyε of

ρ = 10−9 g/cm3

ε = 0.
(86)

One octant of a sphere of radiusR= 1.5 cm, centered at the corner (0, 0, 0), is placed onto
the Cartesian mesh using the method of Section 4. This sphere contains the same gas (no
material boundary is tracked) with

ρ = 1 g/cm3

ε = 5× 1010 erg/g
(87)

(pressure is 10/3× 1010 dyn/cm2 inside the sphere). In the Sedov shock, we initialize with
cold background material with

ρ = 10−3 g/cm3

ε = 0,
(88)

except in the single zone at the origin, where we set the specific internal energy to 5×
1010 erg/g (pressure is 10/3× 107dyn/cm2). Reflective boundary conditions are enforced
on the three planes of the mesh that meet at the origin. On the opposite three planes, in order
to maintain the integrity of the mesh, we fix the node locations, allowing material to flow
outward through the boundary. We determine an appropriate final timeT by demanding
that less than 10−7 of the total mass has been lost through the outer boundary, ensuring that
the loss of total energy due to outflowing material is insignificant, and choose

T = 6.0µs (rarefaction)

T = 1250µs (Sedov shock).
(89)

Since the gas before the wave (or shock front) is not traveling significantly faster than the
wave itself, and the gas at the outer boundary begins at zero temperature, the fraction of lost
energy due to mass loss is comparable to or less than the fraction of lost mass. We measure
the total problem energy before and after the incremental remap at every cycle and, thus,
isolate the total energy deficit due to momentum diffusion during the incremental remap
from numerical drift of the energy during the Lagrange cycle. Att = T , we remap the fields
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FIG. 11. Energy normalized to initial energy for rarefaction wave versus simulation time. The vertical crosses
are the total energy of the EQP2 and EQP1 systems after direct remap to Cartesian mesh.

from the distorted ALE mesh to the original Cartesian mesh and calculate the kinetic energy
before and after remapping. In Fig. 11 we show the total energy as a function of time for
the simulation of the rarefaction wave, and the energy for the Sedov shock is shown in
Fig. 12. In all of these runs, over 98% of the energy lost during the simulation is attributable

FIG. 12. Same as Fig. 11, for Sedov shock.
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to the momentum diffusion during the incremental remaps, with the remainder of energy
loss during the Lagrangian evolution.

In these figures, we have used three grid motion schemes, local equipotential relaxation
of the nodes after every Lagrange step with second-order advection (EQP2), equipotential
relaxation with first-order advection (EQP1), and full relaxation to the original positions
after each Lagrange step (FULL2). The FULL2 method returns the problem to a Cartesian
mesh after every step and uses second-order stripwise advection. At the final timeT , the
EQP2 and EQP1 results are directly remapped to the Cartesian mesh, as described in Sections
2 and 3. The energies of these configurations after the direct remap are shown as plus signs
in Figs. 11 and 12. The plots show that the energy lost in an application of the first-order
direct remap, performed after the simulation, is less than the energy lost to momentum
diffusion during the advection. This interpolation technique (3), if needed for frequent use
within the hydro, would need to be improved to second-order in order to prevent excessive
diffusion. The direct remap CPU items for the EQP2 runs are 1210 s on a 440 MHz DEC
Alpha for the Sedov wave, and 1010 s for the rarefaction wave.

6. SUMMARY

We have developed a fully geometric algorithm for grid intersections between polyhedral
meshes and demonstrated applications to remapping of physical configurations from one
mesh to a different mesh and to region overlays. This geometry algorithm represents an
improvement over the method of Dukowicz and Padial [4] because we are able to detect all
possible intersections between zones and because we handle coincidences between donor
and target nodes, edges, and facets without altering the positions of nodes, thus allowing
us to conserve mass to nearly machine precision. We have demonstrated the use of region
overlays to initialize and remapping to postprocess meshes for hydrodynamics simulations.
For our remap tests, the speed ranges from 53 full target zones per second for the Sedov
shock and 57 zones per second for the Rayleigh–Taylor test (Cartesian target) to 64 target
zones per second for the rarefaction wave. A preliminary test using domain decomposition
suggests that a parallel implementation will be relatively straightforward and potentially
scale efficiently with the number of processors.

There are several ways in which we plan to provide enhancements to the remapping
procedure. We will handle mixed zones in the donor mesh by decomposing these zones into
polyhedral parts, each of which contains a single material, before computing the volumes
of intersection between each part and the target zones. We also plan to implement more
optimal filtering algorithms, tailoring these algorithms to particular mesh geometries. A
second-order remap procedure, with the density fieldq(x)within each zone a linear function
of x, is planned in order to reduce the effects, such as loss of kinetic energy, arising from
diffusion, thus increasing the accuracy of the remap.
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